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ABSTRACT

The paper is concerned with the controllability of impulsive functional integrodifferential equations
with nonlocal conditions. Using the measure of noncompactness and Monch fixed point theorem, we establish
some sufficient conditions for controllability and also our theorems extend some analogous results of

(impulsive) control systems.
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1. INTRODUCTION

Impulsive differential equations are a class
of important models which describes many
evolution process that abruptly change their state at
a certain moment,see the monographs of Bainov and
Simonov (1993), Lakshmikantham et al. (1989) and
have been studied extensively by many authors
(Cuevas et al, 2009; Fan and Li, 2010; Anguraj and
Mallika Arjunan, 2009). On the other hand, the
concept of controllability is of great importance in
mathematical control theory. Many authors have
been studied the control of nonlinear systems with
and without impulses; see for instance (Guo et al,
2004; Chen and Li, 2010; Ji et al, 2011).

The starting point of this paper is the work
in papers (Ji et al, 2011; Jose et al,, 2013). Especially,
authors in Jose et al. (2013) investigated the
controllability results of mixed-type functional
integro-differential  evolution equations  with
nonlocal conditions
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by using Monch fixed point theorem. And in (Ji et al,
2011), authors studied the following controllability

of impulsive differential systems with nonlocal
conditions of the form

Xt =Atxt +ftxt + But ae on
0,b (1.4)
Axti=xttsxt-=ILixt;,i
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Motivated by above mentioned works (Ji et al, 2011;
Jose et al, 2013), the main work of this paper is to
prove the controllability results of impulsive integro-
differential systems with nonlocal conditions.
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Where A t is a family of linear operators which
generates an evolution operator

Ut,s:A=t,s€0,bx0,b:0<s<t<b
->LX,

here, X is a banach space, L X is the space of all
bounded linear operators in X;f:0,b XX —
X;G:0,bXX->X,0<t1<urrrn < tx, <ty 1=
b;I;=X-X,i =1, ..,sare impulsive functions;
M:PC 0,b ;X—-X; B is a bounded linear
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operators from a Banach spaceV to X and the
control functionu(+) is given in L2( 0, b, V).

The paper is organized as follows: In section
2, we will recall some basic notations definition,
hypothesis and necessary preliminaries. In section 3,
we prove the controllability of impulsive integro-
differential system with nonlocal system(1.7) -(1.9),
usingMonch fixed point theorem.

2. PRELIMINARIES

In this section, we recall some basic
definitions and lemmas which will be used to prove
our main results of this paper.

Let (X, .) be a real banach space .We
denote by C([0,b];X) the space of X- valued
continuous function on [0,b]Jwith the norm x =
sup{ x(t) ,t€[0,b]} and by L1([0,b];X) the space of
X- valued Bochnerintegrable functions on[0,b] with

the norm f 15" £(£) dtS .

For the sake of simplicity, we put J=[0,b];
Jo=10,t1]; Ji= (ti, ti+1],i=1,......,s. In order to define
the mild solution of problem (1.7)-(1.9), we
introduce the set PC([0,b];X) ={u: [0,b] >X: uis];
continuous on J;,i=0,1,...,s and the right limit u(t#)
exists, i = 1.....,s}. It is easy to verify that PC([0,b];X) is
a banach space with the norm u p¢ = sup{ u(t) ,t
e [0,b]}.

Definition 2.1: Let E*+ be the positive cone of an
order Banach space (E,<) . A function ® defined on
the set of all bounded subsets of the Banach space X
with values in E+ is called a measure of
noncompactness (MNC) on X if ®( coQ) = ®(Q) for
all bounded subsets Q) c X,where co() stands for the
closed convex hull of Q. The MNC @ is said:

(1) Monotone if for all bounded subsets Q1, Q; of X
we have:

Q1€ Q)= (P(Q) P(Q22));

(2) Nonsingular if ®({a}u Q) = ®(Q) for every a eX
N cX;

(3 Regular if ®(Q) = 0 if only if Q is relatively
compact in x.

One of the most important examples of MNC is
the noncompactness measure Of Hausdorff § defined
on each bounded subset Q of X by £(Q)=inf { &> 0;Q
can be covered by a finite number of balls of radii

smaller than &}.for all bounded subset Q, Q1, Q; of X,

(1) B Q1+ Q2) < B(Q1) + f(Q2) , where Q; +
Q= {x+y: x €Qq,yey}

(2) B U Q) s max{F(2),B(2) };,

(3) B(AQ) < 1 B Q for any A€ R;

(4) If the map Q: D(Q) C X —Zis Lipschitz
continuous with constants k,then $7(QZ) <

kB (Q) for any bounded subset Q < D(Q),
where Z is a Banach space.

Definition 2.2: A two parameter family of bounded
linear operators U(t,s),0 < s <t <bon Xis called an
evolution system if the following two conditions are
satisfied:

@D U(s,s)=LU(t)U(r,s)=U(t,s)for0<s<r
St<b;
(ii) U(t, s) is strongly continuous for0 <s<t<b
And there exists M1> 0 such thatU(t,s) <M ) for any

(t,;s) eT.

Definition 2.3: A function x (*) € PC ([0,b];X) is a
mild solution of(1.7)-(1.9) if

Xt=Ut,0x0—Mxt

+U(t,s)fs xs
0

N
+ (s,7,x(7))dt + Bu(s) ds
0
+ Ut tl(x(t)) forallte [0,b],
L L L

o<ti<t
where x 0 + M x = x,.

Definition 2.4: The system (1.7) -(1.9) is said to be
controllable on the interval ] if for every initial
function @eD and x; € X, there exists a control u €L,
(J, V) such that themild solution x(+) of (1.7) - (1.9)
satisfiesx b =x;+ M x .

Definition 2.5: A countableset {f,};*, < L1(]0,b];X)
is said to be semicompact if:

(1) The sequence {fp}i® isrelatively
compact in X for a.e. t € [0,b]

(2) There is a function ueL!([0,b]; R+) satisfying
Supn=1 fn(t) < p(t) forae.

te [0,b].

Lemma 2.1: Let {f, }};*be a sequence of function in
L1(]0,b];R*).Assume that there exist

u, neL([0,b]; R*) satisfying Supfl (0) < u(®)

n=z

t =) <n(t) ae. tef0,b]. Then for all te
fo(,b{f‘ n_vlv)e g )have,B({ t[u ts f s :n=1})<
0

and

n

t
2M1 n(s) ds .

Lemma 2.2: Let (Gf) (t) = ,U ts f(s)ds. If
{fn}t% € L1([0,b];X) is semicompact then the set
{Gfn };t% is relatively compact in C([0,b];X) and
moreover, if f,, = fo, then forallt e [0,b],



(an) t— (Gfgtas n— +oo,

Lemma 2.3: Let D be a closed convex subset of a
Banach space X and 0eD. Assume that F: D-=X is a
continuous map which satisfies Monch’s condition,

that is, MC Discountable, M Cco {0O}JUF(M) = M

is compact. Then, there exists xeD with x = F(x).
3. CONTROLLABILITY RESULTS
We first give the following hypothesis:

(H1) A(t) is a family of linear operators, A(t): D(A)
— X, D(A) not depending on t and dense
subset of X, generating an equicontinuous evolution
system {U(t,s) : (t,s) € A}, i.e,

(ts) = {U t, s x: x € B} is equicontinuous for t > 0
and for all bounded subsets B.

(H2) The function f: [0,b] X X — X satisfies:

(i) For a.e. te[o, b],the function f(t,):X =X is
continuous and for all xeX,the function f (-
, X):[0,b] =X is measurable;

(ii) There exists a function meL1([0,b];R*) and a
nondecreasing continuous function

Q: R* = Rtsuch that f(t, x) <
mtQ(x),xeX, te[0, b]Jand
Qn)
limp o0 inf "=0.
(iii) There exists heL1([0,b];R*) such that, for
any bounded subset Dc X,

Bftxt< t B x t fora.e. te[O0, b],
where £ is the Hausdorff MNC
(H3)The function h:[0,b] X X — X satisfies:

(i) For each t, se[0,b],the function h(t,s,):X =X
is continuous and for all xeX,the

function h(:,, x):[0,b] =X is measurable;

(ii) There exists a function meL([0,b];R*) such
that

(t,s,x(s)) S(m t,s x(s), xeX, t,se[0, b]

and limy 4o infT= 0.

(iii) There exists {eL1([0,b];R*) such that, for any
bounded subset D c X,

5 t,s,xs<{t,sp xsfora.ete,

t
For convenience let us take L =max ym(t, s)ds

and * = max t(&t, s)ds

(H4) M: PC (J,X) = X is a continuous compact
operator such that

: M(y)
lim =0
ypcoto Y pC
(H5) The linear operator W:L2 ],V — X is defined

byWu = bOU b, s Bu(s)ds such that:

)

(i) W has an invertible operators W—-1! which take
valuesin L% ],V kerW andthere

exist positive constants M,, M3 such that B < M,
and W-1 < Mj3;
(ii) thereis K € L1], R* such that, for any

w

bounded set Qc X

BW-Qt<KwtB(Q)

(H6) Letl:X—>X,isi=1,...,sbeacontinuous
operator such that:

(i) There are non decreasing functions I;: R* -
Rt,i=1, ..., ssuch that

I (x) <X and lim inf i ™ =0 i=1,..s.
L L

n—+oo n
(i) There exist constants K;=>0, such
thatf I;x(t < K;f(x(¢t)).i=1,...s.
(H7) The following estimation holds true:
L = (M1+ 2M2M2 KW 1) s . Ki+4M1+
8M2M;Kw1q "1+ {b< =
1 L L

Where My =sup{Ut,s, (t, s)eA}

Theorem: Assume that (H1) - (H7) are satisfied,
then the impulsive integro differential system

(1.7)-(1.9) is nonlocally controllable on ], provided
that

1

—[C1+ C2 M(xn) + C3.Q n+ C4Xn (T) +
n

Cs =1 Lhi(m] <1

Proof : Using hypothesis (H5)(i),for every
xePC(J, X),define the control

ut=W-1x —Mx—-Ub,0x-Mx
X 1 n 0 n
b
—Ub,sfs,x,s
0
S
+ S, T, xpTdtds
0
—-Ut, till-xnti
o<ti<t

We shall show that, when using this control, the
operator, defined by



Gxt=U(t,0)(xo— M(x))

+U(t,s)fs,xs
0

N

+ (s,7,x(1)) dt + Bux(s) ds
0

+ U t, t; Ii x t;
o<ti<t

(3.1)

has afixed point. This fixed point is then a solution of
the system (1.7)-(1.9). Clearly

X b =x1— M x = G x b which implies that the
system (1.7)-(1.9) is controllable.

We define G=G1 + G, where
Gx t =
1

o<t<t Ut tid; (x(t:))

UGt O~ Max)+

S Fsxs + (5,7, x(r)) dr +
0

0
Buy (s) ds

for all te 0, b .subsequently,we will prove that Ghas a
fixed point by using lemmaz2.3. (Monch fixed point
theorem).

Step1:There exist a positive integer ny > 1 such that
G(Bn,) € Bny,whereB,,={xePC ], X : x < ng}.

Suppose the contrary. Then we can find

X, €PC ], X ,yn= Gx,€PC ], X ;suchthatx, pc<n
and y, pc > n for everyn > 1.

Now we have
Ynt =U(t, 0)(Xo— M(xy)
t

+U(t,s) fs, xS
0
N

+ (s, 7, %0 (7)) dT + Buy, ()
0

+ Ut t;:1; (xn (t:))
o<ti<t

y <Mx+Mx
n PC 1 0 n
+M19xanmL1

+ MlbLO XnT pc
1
+M1{ M;b2 Uy, )2
s

+MIx (3.2)

i nPC
i=1
Uy, 2 S M3[x14+ Mixo+ (1+M1) M x,

+M1.Q(xnpc)mL1

+M1bLo X, (T) pc

Xn PC

Substituting (3.3) in (3.2) we get

<r—lC1+C2Mxn+ CgQH+C4XnT

1
M1 +1M2M2_b2M3 X0
1
+ M1M2b2M3 X1

Cy= My + MyMyb2 Ms+ MZMZ?ZMg,ng =
1

MlmL1+ M1M2b21\7l3m L1

w ere C; =

C4. = MlbL() + M211\/12b273l\/[3L0 , C5 =

1

M+ M3M; b2 M3

by passing to the limit as n — +o in (3.4),we
getl < 0, which is a contradiction. Thus we deduce
that there is ng = 1 such that G(B, ) € B,. |

Step 2: The operators Gis continuous
onPC 0, b ; XFor thispurpose, we assume that

X, = xinPC 0, b ; X.Then by hypothesis (H4) and
(H6), we have
G x> G xpc<M{Mx,—Mx
N
+ Ml Ii Xnti
i=1
- Ii X t;

—>sz Cc
b

<Mif s, xS
0

(3.5) Gy

—fs,xsds

b s

+ M [
0 0

S, T, Xy T
— (s,7,x(t))]dt ds

+M M b2u
12 xn

— Uy 12 (36)

<M3[Mx,—Mx
+M{Mx,—Mx
b
+Mif s, xps—fs,xsds
0

Uxp —Ux 2

(33)

(3.4)



b s

+M; [
0 0

$,T,Xn T

(s, 7, x(7))]dt

S
+MIx t
1 i onoi
i=1

—Lixt (3.7)

By domination convergence theorem, we have

Gx, = Gx pc < Gi1xy = G1X pc +
Gox ¢ — 0,as n— +oo, ie., G is continuous.

szn -

Step 3: G(D) is equicontinuous on every J;, i=1,..s.ie,,
DS w 0UG D isalso equicontinuous on every
Ji.To this end, let yeG(D) and t;, tz€];, t1 < t,. There
is x € D such that

yt—yt1 < || Uty, 0 —Utqy,0x9—
Mx||

t1
+ || Uty s
0

—Ut,sfs,xs

N
+ (s,7,x(7)) dt + Bux(s)
|| ds

0

t2
+Ut,0fs,xs

t1
s

+ S, T, xTdT
0

+Buy s ds (3.8)

By the equicontinuity property of U -, s and the
absolute continuity of the lebesgue integral, right
hand side of the inequality equation (3.8) tends to
zero independent of y as t; — t;.

Therefore G (D) is equicontinuous on every J;

Step 4: Assume that D= {x, }}=;. Since G maps D into
an equicontinuous family, G (D) is equicontinuous on

Ji.HenceD Sco 0 UG D is also equicontinuous
onevery J;.

Now we shall show that (GD) (t) is relatively
compact in X for each te J.

From the compactness of M (), we have
B (Glxrsl (O}=1

SMl Klﬁ x t;
i=1

(3.9)

for te 0, b .by lemma(2.1),we have

ﬁV(uxn N < )

n=1

< Ky (s) 2M,
0

sfxsds+2M{*b S xs

N

Kiﬂ X t; (310)
i=1
Then this implies that

ﬁ (GZ Xn (t)}m n=1

<2M;
0

sBxsds

b b
+ 4M2ZM, Ky s ds ( sf xsds)
0 0

+2M(*b S xs
b

+4MEM, Ky sds *bf x s
0

b
Ky n dn
0

+ 2M2M; KiBx t: (3.11)

There fore

B((GD)(1))

N

SMl KiﬁX(ti)
i=1

+ 2M,

b b
+4M2M K s ds sfBxs ds
1 2 w
0 0
+2M;

b
+4MEM, Ky sds *bf x s
0

N

b
0 i=1
we have
B GD = M +2M2MK 1S

w
4M1+ BM2Mz Ky, ! 1tg’1*f;ﬁst

K+

=1t

=LBxs

Where L is defined in (H7). Thus, from the Monch’s
condition, we get

B(D) <p(co 0UGD=p(G(D)) <LB(D)

Which implies that (D) = 0, since hypothesis (H7)
holds. So we have that D is relatively compact.
Finally, due to lemma, G has at least a fixed point and

5



thus the system (1.7)-(1.9) is non locally controllable
on [0,b].
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