NEW SEPARATION AXIOMS VIA *GENERALIZED PRE OPEN SETS #### Kavitha. P.R*. Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore – 641029. *E.mail: kavikasc02@gmail.com #### **ABSTRACT** In this Paper, we introduce the notion of *g-p open sets and *g-p continuity in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties of (*g, p)- T_i , (*g, p)- D_i spaces, for i = 0, 1, 2,... **Keywords:** *g-p open, *g-p continuity, (*g, p)- T_i , (*g, p)- D_i . #### 1. INTRODUCTION In 2000, Jafari introduced the notion of preregular p-open sets and further investigated its fundamental properties in (Jafari, 2006). The concept of preopen sets and precontinuous functions in topological spaces are introduced by A. S. Mashhour *et al* in 1982. M.K.R.S Veerakumar introduced the notion of *g-p open sets which are weaker than open sets. Since then *g-open sets have been widely used in order to introduce new spaces and functions. In this paper X and Y denote the topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A) respectively. ### 2. PRELIMINARIES We recall the following definitions which are useful in the sequel. # 2.1. Definition A subset A of a space (X,τ) is called - i) a pre-open set (Mashhour *et al.*, 1982) if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$. - ii) a semi-open set (Levine,1963) if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$. - iii) an α -open set (Njastad, 1965) if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ and an α -closed set if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subseteq A$. - iv) a semi-pre open set(Andrijevic,1986) if $A \subseteq cl(int(cl(A)))$ and a semi-pre closed set if $int(cl(int(A))) \subseteq A$. - v) a regular open set (Stone,1937) if A = int(cl(A)) and a regular closed set if cl(int(A)) = A and - vi) δ -open set (Velicko, 1968) if for each $x \in A$ there exists a regular open set G such that $x \in G \subseteq A$. The pre-closure (resp. semi-closure, α -closure, semi-preclosure) of a subset A of a space (X,τ) is the intersection of all pre-closed (resp. semi-closed, α -closed, semi-preclosed) sets that contain A and is denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)). ## 2.2. Definition A subset A of a space (X,τ) is called a g-closed set (Veera kumar, 2003) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X,τ) . Let (X,τ) be a space and let A be a subset of X. A is called *g-closed set (Veera kumar, 2006) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open set of (X,τ) . The complement of a *g-closed set is called *g-open. The intersection of all *g-closed (resp. δ -closed) sets containing A is called the *g-closure (resp. δ -closure) of A and is denoted by $cl_{*g}(A)$ (resp. $cl_{\delta}(A)$). # 2.3. Definition A subset A of a space (X,τ) is called a δ -preopen (Raychaudhuri and Mukherjee, 1993) if A int(cl $_\delta$ (A)). A family of δ -preopen sets in a topological space (X,τ) is denoted by $\delta PO(X,\tau)$. ## 3. *GENERALIZED PRE OPEN SETS ## 3.1. Definition A subset A of a space (X,τ) is said to be *g-popen if A int(cl*g (A)). The complement of a *g-popen sets is said to be *g-p-closed. The family of all *g-p-open (resp. *g-p-closed) sets in a topological space (X,τ) is denoted by *gPO (X,τ) (resp. *gPC (X,τ)). # 3.2. Definition Let A be a subset of a topological space (X,τ) . The intersection of all *g-p-closed (resp. δ -preclosed) sets containing A is called the *g-p-closure (resp. δ -closure (Raychaudhuri and Mukherjee, 1993)) of A and it is denoted by pcl_{*g} (A) (resp. pcl_{δ} (A). #### 3.3. Definition Let (X,τ) be a topological space. A subset U of X is called (*g,p) – neighbourbood of a point $x \in X$ if there exists a *g-p-open set V such that $x \in V \subseteq U$. #### 3.4. Theorem For the *g-p-closure of subsets A, B in a topological space (X,τ) , the following properties hold: - (i) A is *g-p-closed in (X,τ) if and only if $A = pcl_{*g}(A)$, - (ii) If $A \subset B$, then $pcl_{g}(A) \subset pcl_{g}(B)$ - (iii) $pcl_{g}(A)$ is *g-p-closed, that is $pcl_{g}(A) = pcl_{g}(pcl_{g}(A))$ and - (iv) $x \in pcl_{g}(A)$ if and only if $A \cap V \neq \phi$ for every $V \in {}^{*}gPO(X,\tau)$ containing x. # **Proof:** It is obvious. #### 3.5. Theorem For a family of subsets of a topological space (X,τ) , the following properties hold: - (i) $\operatorname{pcl}_{g}(\cap \{A_{\beta} : \beta \in \Delta\}) \subset \cap \{\operatorname{pcl}_{g}(A_{\beta}) : \beta \in \Delta\}$ - (ii) $\operatorname{pcl}_{*g}(\cup \{A_{\beta} : \beta \in \Delta\}) \supset \cup \{\operatorname{pcl}_{*g}(A_{\beta}) : \beta \in \Delta\}$ ## **Proof:** - (i) Since $\bigcap_{\beta \in \Delta} A_{\beta} \subset A_{\beta}$ for each $\beta \in \Delta$, by theorem 3.4, we have $\operatorname{pcl}_{*g}(\bigcap_{\beta \in \Delta} A_{\beta}) \subset \operatorname{pcl}_{*g}(A_{\beta})$ for each $\beta \in \Delta$ and hence $\operatorname{pcl}_{*g}(\bigcap_{\beta \in \Delta} A_{\beta}) \subset \bigcap_{\beta \in \Delta} \operatorname{pcl} * \operatorname{g}A_{\beta}$. - (ii) Since $A_{\beta} \subseteq \cup_{\beta \in \Delta} A_{\beta}$ for each $\beta \in \Delta$, by theorem 3.4, we have $\operatorname{pcl}_{*g}(A_{\beta}) \subseteq \operatorname{pcl}_{*g}(\cup_{\beta \in \Delta} A_{\beta})$ for each $\beta \in \Delta$ and hence $\cup_{\beta \in \Delta} \operatorname{pcl} * \operatorname{g} A_{\beta} \subseteq \operatorname{pcl}_{*g}(\cup_{\beta \in \Delta} A_{\beta})$. #### 3.6. Theorem Every *g-p-open sets is pre-open. **Proof:** It follows from the definitions. The converse of the above theorem need not be true by the following example. ### 3.7. Example Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a,b\}\}$. Here $\{a,c\}$ is not *g-p-open but however it is pre-open, since the 8g-p-open sets are X, ϕ , $\{a\}$, $\{b\}$, $\{a,b\}$ and the pre-open sets are X, ϕ , $\{a\}$, $\{b\}$, $\{a,c\}$, $\{a,c\}$, $\{b,c\}$. - 3.8. Theorem - (i) Every pre-open set is δ -pre-open (Caldas, 2010). - (ii) Every *g-p-open set is δ -pre-open. **Proof (ii):** It follows from (i) and theorem 3.6. #### 3.9. Definition A subset A of a topological space (X,τ) is called a $D_{({}^*g,p)}$ – set (resp. D_p – set , $D_{(\delta,p)}$ – set (Caldas, 2010)) if there are two U, $V \in {}^*gPO(X,\tau)$ (resp. $PO(X,\tau)$, $\delta PO(X,\tau)$) such that $U \neq X$ and A = U - V. It is true that every *g-p-open (resp. preopen) set U different from X is a $D_{(*g,p)}$ – set (resp. D_p – set) if A = U and V = ϕ . #### 3.10. Definition # A topological space (X,τ) is said to be - (1) (*g, p)-D₀ (resp. pre-D₀ (Caldas,2001; Jafari, 2001), (δ ,p)- D₀ (Caldas, 2010)) if for any distinct pair of points x and y of X there exist a D_(*g,p) set (resp. D_p set, D_(δ ,p) set) of X containing x but not y or a D_(*g,p) set (resp. D_p set, D_(δ ,p) set) of X containing y but not x. - (2) (*g, p)-D₁ (resp. pre-D₁ (Caldas,2001; Jafari,2001), (δ ,p)- D₁ (Caldas, 2010)) if for any distinct pair of points x and y of X there exist a D_(*g,p) set (resp. D_p set, D_(δ ,p) set) of X containing x but not y or a D_(*g,p) set (resp. D_p set, D_(δ ,p) set) of X containing y but not x. - (3) (*g, p)-D₂ (resp. pre-D₂ (Caldas,2001; Jafari, 2001), (δ ,p)- D₂ (Caldas, 2010)) if for any distinct pair of points x and y of X there exists disjoint D_(*g,p) set (resp. D_p set, D_(δ ,p) set) G and E of X containing x and y, respectively. #### 3.11. Definition #### A topological space (X,τ) is said to be - (1) (*g, p)- T_0 (resp. pre- T_0 (Kar and Bhattacharyya, 1990; Nour, 1989) (δ ,p)- T_0 (Caldas, 2005)) if for any distinct pair of points x and y of X there exist a *g-p-open (resp. pre-open, δ -pre-open) set U in X containing x but not y or a *g-p-open (resp. pre-open, δ -open) set V in X containing y but not x. - (2) (*g, p)- T_1 (resp. pre- T_1 (Kar and Bhattacharyya, 1990; Nour, 1989), (δ,p) T_1 (Caldas, 2005)) if for any distinct pair of points x and y of X there exist a *g-p-open (resp. pre-open, δ -pre-open) set U in X containing x but not y and a *g-p-open (resp. pre-open, δ -pre-open) set V in X containing y but not x. - (3) (*g, p)- T_2 (resp. pre- T_2 (Kar and Bhattacharyya, 1990; Nour, 1989), (δ,p) T_2 (Caldas, 2005)) if for any distinct pair of points x and y of X there exist a *g-p-open (resp. pre-open, δ -pre-open) sets U and V in X containing x and y, respectively, such that $U \cap V = \phi$. #### 3.12. Remark - (i) If (X,τ) is $(*g, p)-T_i$, then it is $(*g, p)-T_{i-1}$, i=1,2. - (ii) If (X,τ) is $(*g, p)-T_i$, then it is $(*g, p)-D_i$, i=0,1,2. - (iii) If (X,τ) is $(*g, p)-D_i$, then it is $(*g, p)-D_{i-1}$, i=1,2. - (iv) If (X,τ) is $(*g, p)-D_i$, then it is pre- T_i , i = 0,1,2. By the above Remark 3.12 and [4], we have the following diagram. #### 3.13. Theorem For a topological space (X,τ) , the following properties hold: (X,τ) is $(*g, p)-D_1$ if and only if it is $(*g, p)-D_2$. #### **Proof:** Sufficiency Part: This follows from Remark 3.12. Necessity Part: Suppose X is a (*g, p)- D_1 . Then for each distinct pair x, $y \in X$, we have $D_{(*g,p)}$ -sets G_1 and G_2 such that $x \in G_1$, $y \notin G_1$; $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1/U_2$, $G_2 = U_3/U_4$, where U_1 , U_2 , U_3 , $U_4 \in *gPO(X,\tau)$. From $x \notin G_2$ we have either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately. - (1) $x \notin U_3$. From $y \notin G_1$ we have two subcases: - (a) $y \notin U_1$. From $x \in U_1 / U_2$ we have $x \in U_1 / (U_2 \cup U_3)$ and from $y \in U_3 / U_4$ we have $y \in U_3 / (U_1 \cup U_4)$. It is easy to see that $(U_1 / (U_2 \cup U_3)) \cap (U_3 / (U_1 \cup U_4)) = \phi$. - (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1/U_2$, $y \in U_2$ and $(U_1/U_2) \cap U_2 = \phi$. - (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 / U_4$, $x \in U_4$ and $(U_3 / U_4) \cap U_4 = \phi$. From the discussion above we know that the space X is $(*g, p)-D_2$. # 3.14. Definition. A point $x \in X$ which has only X as the (*g, p) – neighbourhood is called a (*g, p)- neat point. ### 3.15. Theorem If a topological spaces (X, τ) is (*g, p)- D_1 , so each point x of X is contained in a $D_{(*g,p)}$ – set O = U / V and thus in U. By definition $U \neq X$. This implies that x is not a (*g, p)-neat point. ### 3.16. Definition A topological space (X, τ) is (*g, p)-symmetric if x and y in $X, x \in pcl_{*g}(\{y\})$ implies $y \in pcl_{*g}(\{x\})$. # 3.17. Theorem For a topological space (X, τ), the following properties hold. - (1) If $\{x\}$ is *g-p-closed for each $x \in X$, then (X, τ) is $(*g, p)-T_1$. - (2) Every (*g, p)- T_1 space is (*g, p)-symmetric. ### Proof: - (1) Suppose {p} is *g-p-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X / \{x\}$. Hence $X / \{x\}$ is a *g-p-open set contained in y but not containing x. Similarly $X/\{y\}$ is a *g-p-open set contained in x but not containing y. Accordingly X is a (*g, p)- T_1 space. - (2) Suppose that $y \notin pcl_{g}(\{x\})$. Then, since $x \neq y$, there exists a *g-p-open set U containing x such that $y \notin U$ and hence $x \notin pcl_{g}(\{y\})$. This shows that $x \in pcl_{g}(\{y\})$ implies $y \in pcl_{g}(\{x\})$. Therefore (X, τ) is (*g, p)-symmetric. ### 3.18. Definition A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *g-precontinuous if for each $x \in X$ and each *g-p-open set V containing f(x), there is a *g-p-open set U in X containing x such that $f(U) \subseteq V$. ### 3.19. Theorem. If f: $(X, \tau) \to (Y, \sigma)$ is a *g-precontinuous surjective function and E is a $D_{(*g, p)}$ -set in Y, then the inverse image $f^{-1}(E)$ is a $D_{(*g, p)}$ -set in X. ### **Proof:** Let E be a $D_{(*g, p)}$ -set in Y. Then there are *gp-open sets U_1 and U_2 in Y such that $E = U_1/U_2$ and $U_1 \neq Y$. By the *g-precontinuity of f, $f^{-1}(U1)$ and $f^{-1}(U_2)$ are *g-p-open in X. Since $U_1 \neq Y$, we have $f^{-1}(U1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U1) / f^{-1}(U_2)$ is a $D_{(*g, p)}$ -set. #### 3.20. Theorem If (Y, σ) is (*g, p)- D_1 and $f: (X, \tau) \to (Y, \sigma)$ is a *g-precontinuous bijection, then (X, τ) is (*g, p)- D_1 . ## **Proof:** Suppose that Y is a (*g, p)- D_1 space. Let x and y be any pair of distinct points in X. Since F is injective and Y is (*g, p)- D_1 , there exist $D_{(*g, p)}$ -sets G_x and G_y of Y containing f(x) and f(y), respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By theorem 3.19, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $D_{({}^*g,\,p)}$ -sets in X containing x and y, respectively, such that $y \notin f^{-1}(G_x)$ and $x \notin f^{-1}(G_y)$. This implies that X is a $({}^*g,\,p)$ - D_1 space. ### 3.21. Theorem A topological space (X,τ) is $(*g, p)-D_1$ if and only if for each pair of distinct points $x, y \in X$, there exists a *g-pre-continuous surjective function $f: (X,\tau) \rightarrow (Y,\sigma)$ such that f(x) and f(y) are distinct, where (Y,σ) is a $(*g,p)-D_1$ space. ### **Proof:** Necessity: For every pair of distinct points of X, it suffices to take the identity function on X. Sufficiency: Let x and y be any pair of distinct points in X. By hypothesis there exists a *g-pre-continuous, surjective function f of a space X onto a (*g, p)-D₁ space Y such that $f(x) \neq f(y)$. By theorem 3.13, there exist disjoint $D_{(*g, p)}$ -sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is *g-pre-continuous and surjective, by theorem 3.20, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $D_{(*g, p)}$ -sets in X containing x and y, respectively, hence by theorem 3.13, X is a (*g, p)-D₁ space. #### REFERENCES - Andrijevic, D. (1986), Semi-preopen sets, *Mat. Vesnik*, **38**(1): 24-32. - Caldas, M. (2001), A separation axiom between pre- T_0 and pre- T_1 , East West J. Math., **3**(2): 171-177. - Caldas, M., S. Jafari, T. Noiri and M. Sarsak, Weak separation axioms via pre-regular p-open sets, *Institute of Adv. Sci. Research, Pure Math.,* **2**(2): 2010-1-13. - Caldas, M. T. Fukutake, S. Jafari and T. Noiri, (2005), Some applications of δ preopen sets in topological spaces, *Bull. Inst. Math. Acad. Sinica*, **33** (3): 261-276. - Jafari, S. (2001), On a weak separation axiom, *Far East J. Math. Sci.*, **3**(5):779-787. - Jafari, S. (2006), On certain types of notions via preopen sets, *Tamkang J. Math.* **37**(4): 391-398. - Jafari, S. (2000), Pre-rarely-p-continuous functions, *Far East J. Math. Sci.* Special Vol. Part I (Geometry and Topology), 87-96. - Kar, A. and P. Bhattacharyya, (1990), Some weak separation axioms, Bull. *Calcutta Math. Soc.*, **82**: 415-422. - Levine, N. (1963), semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**: 36-41. - Mashhour, A.S., M.E. Abd El-Monsef and S.N. El-Deeb, (1982), On pre continuous and weak pre continuous mappings, *Proc. Math. Phys. Soc., Egypt,* **53**: 47-53. - Njastad, O. (1965), On some classes of nearly open sets, *Pacific I. Math.*, **15**: 961- 970. - Nour, T.M.J. (1989), Contributions to the theory of bitopological spaces, Ph.D. Thesis, Univ. of Delhi. - Raychaudhuri, S. and M.N. Mukherjee, (1993), On δ -almost continuity and δ -preopen sets, *Bull. Inst. Math. Acad. Sinica*, **21**: 357-366. - Stone, M. (1937), Applications of the theory of Boolean rings to general topology, *Trans. Amer. Math. Soc.*, **41**: 374-481. - Velicko, N.V. (1968), H-closed topological spaces, *Amer. Math. Soc. Transl.*, **78**: 103-118. - Veera kumar, M.K.R.S. (2003), *g* -closed sets in topological spaces, *Bulletin Allahabad Math*, 99-112. - Veera kumar, M.K.R.S. (2006), Between g*-closed sets and g-closed sets, *Antartica*.