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ABSTRACT 

The purpose of this paper is to introduce b-mI-open sets in ideal minimal spaces and to investigate 
the relationships between minimal spaces and ideal minimal spaces. Furthermore, decomposition of 
continuous functions are established. 
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1. INTRODUCTION 

An ideal (Kuratowski, 1996) I on a 
nonempty set X is a nonempty collection of subsets 
of X which satisfies (i) A ∈ I and B ⊂ I and (ii) A ∈ I 
and B ∈ I implies A ∪ B ∈ I. Given a topological space 
(X, 𝜏) with an ideal I on X and if P(X) is the set of all 
subsets of X, a set operator (.)*: P(X) → P(X), called a 
local function (6) for A with respect to 𝜏 and I is 
defined as follows: for A ⊂ X , A*(I , 𝜏 ) = {x ∈ X : U ∩ 
A ∉ I for every U ∈ 𝜏 (x)} where 𝜏 (x) = { U ∈ 𝜏 : x ∈  
U}. A Kuratowski closure operator cl*(.) for a 
topology 𝜏*( I ,𝜏 ), called the 𝜏 - topology, finer than 𝜏 
is defined by cl*(A) = A ⊂ A* ( I , 𝜏 ) 
(Vaidyanathaswamy, 1945). A subset A of an ideal 
space is said to be *-dense in itself (Hayashi,1986). ( 
resp. *-closed (Jankovic and Hamlett, 1986)) if A ⊂ 
A* (resp.A* ⊂ A). By a space (X,  𝜏), we always  mean 
a topological space (X, 𝜏 ) with no separation 
properties assumed. If A ⊂ X, cl(A) will, respectively, 
denote the closure and interior of A in (X, 𝜏 ) and 
int*(A)  will  denote the interior of  A  in (X,  𝜏  ).   The 
notion of I-open sets was introduced by Jankovic et 

and  m-c(A)  =  ∩{F  :  A⊂F,  X-F∈  ℳ}.  A  minimal   
(X, ℳ) has the property[𝒰] (Popa and Noiri, 2000)  
if the arbitrary union of m-open sets is again a m- 
open set. 

Ozbakir and Yildirim in 2009 have defined 
the minimal local function 𝐴∗ in an ideal minimal 
space (X, ℳ, I). The notion of α-mI-open set, semi- 
mI-open set, β-mI-open set in (X, ℳ, I) were 
introduced and investigated by Parimala. In this 
paper, by using the local function 𝐴∗ we introduce 
and investigate the notion of α-mI-open set in (X, ℳ, 
I). Furthermore, decompositions of continuous 
function are established. 

2. PRELIMINARIES 

2.1. Definition (Ozbakiri  and  Yildirim,  2009)  Let 
(X, ℳ) be a minimal space with an ideal I and X (.)*m 
be a set operator from P(X) to P(X) (P(X) is the set of 
all subsets of X). For a subset A⊂X, 𝐴∗ (I, ℳ) ={ x ∈ 
𝑋: Um∩ 𝐴 ∉I; for every Um ∈ Um (x)} is called the 
minimal local function of A with respect to I and ℳ. 
We will simply write 𝐴∗ for 𝐴∗ (I, ℳ). 

𝑚 𝑚 

al. in 1992, further it was investigated by Abd El- 
Momsef. In 1965, Njastad initiated the investigation 
of α- open sets, Hatir and Noiri introduced the notion 
of α-I-open sets in an ideal topological spaces (X, 𝜏,I 
), where 𝜏 is a topology and I is an ideal. 

2.2. (Theorem  Ozbakiri  and  Yildirim,  2009)  Let 
(X, ℳ) be a minimal space with I,I’ ideals on X and A, 
B be subsets of X. Then 

(i) A⊂B ⇒ 𝐴∗ ⊂ 𝐵∗ , 
𝑚 𝑚 

Maki  et al. (1996)  introduced the  notion of (ii) I⊂I’⇒ 𝐴∗ (𝐼′ ) ⊂ 𝐴∗ (𝐼), 
𝑚 𝑚 

minimal structure and minimal spaces as a 
generalization   of   topological   spaces   on   a   given 
nonempty set. Also, generalized topologies which are 

(iii) 𝐴∗ =m-cl(𝐴∗ ) ⊂m-cl(A), 

(iv) 𝐴∗ ∪ 𝐵∗ ⊂ (A∪ 𝐵)∗ 𝑚 𝑚 𝑚 
other  generalization  of  topology  were  defined  by 
Csaszar in 2002. Further, it was studied by Popa and 
Noiri in 2000. A subfamily ℳ of the power set P(X) 
of a non empty set X a minimal structure, if 𝜙, X ∈ ℳ. 
(X, ℳ) is called a minimal space (m-space). A  subset 

(v) (𝐴∗ )∗ ⊂ 𝐴∗ 

2.3. Remark (Ozbakiri and Yildirim, 2009) If (X, ℳ) 
has property ( Lashien and Nasef, 1992) then 
𝐴∗ ∪ 𝐵∗ =(A∪ 𝐵)∗ 

𝑚 𝑚 𝑚 

A of X is said to be m-open (Maki, et al ., 1996) if A ∈ 
ℳ. The complement of a m-open set is called a m- 
closed set. Define m-int(A) = ∪{U : U ⊂ A,U ∈ ℳ} 

Definition  2.4.  (Ozbakiri  and  Yildirim,  2009)  Let 
(X, ℳ) be a minimal space with an ideal I on X. The 
set operator m-cl* is called a minimal *-closure and 
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is defined as m-cl*(A) = A∪ 𝐴∗ for A⊂X. We will 
denote by ℳ*(I, ℳ) the minimal structure 
generated by m-cl*, that is, ℳ*(I, ℳ)={ U⊂X: m- 
cl*(X-U)=X-U}. ℳ*(I, ℳ) is called *-minimal 
structure which is finer than ℳ. The elements of 
ℳ*(I, ℳ) are called minimal *-open (briefly, m*- 
open) and the complement of an m*-open set is 
called minimal *-closed (briefly, m*-closed). 

Throughout the paper we simply write ℳ* 
for ℳ*(I, ℳ). If I is an ideal on X, then (X, ℳ,I) is 
called an ideal minimal space. 

2.5. Proposition (Ozbakiri and Yildirim, 2009) The set 
operator m-cl* satisfies the following conditions: 

(i) A⊂m-cl*(A), 

(ii) m-cl*(𝜙)= 𝜙 and m-cl*(X)=X, 

(iii) If A⊂B, then m-cl*(A) ⊂ m-cl*(B), 

(iv) m-cl*(A)∪  m-cl(B) ⊂ m-cl*(A∪B). 

2.6. Remark 

If (X, ℳ) has property (Lashien and Nasef, 
1992) then m-cl*(m-cl*(A))=m-cl*(A) and m-cl*(A)∪ 
m-cl*(B)= m-cl*(A∪B). 

2.7. Lemma (Renukadevi, et al., 2005) Let (X, 𝜏,I) be 
an ideal space and A⊂ 𝑋. If A⊂A*, then A* = cl(A*) = 
cl(A) = cl*(A). 

2.8. Definition 

A subset A of an ideal minimal space 
(X, ℳ, 𝐼) is said to be 

(i) α-mI-open set (Parimala, 2010) if A⊂ m-int(m- 
cl*(m-int(A))). 

(ii) semi-mI-open set (Parimala, 2010) if A⊂ m- 
cl*(m-int(A))). 

(iii) β-mI-open set (Parimala, 2010) if A⊂ m-cl(m- 
int(m-cl*(A))). 

(iv) mI-open set (Ozbakiri and Yildirim, 2009) if A⊂ 
m-int(𝐴∗ ) 

(v) pre-mI-open set (Parimala, 2010) if A⊂m-int(m- 
cl*(A)). 

3. B-MI-OPEN SET AND B-MI-CLOSED SET 

3.1. Definition 

A  subset  A  of   an   ideal   minimal   space 
(X, ℳ, 𝐼) is said to be a b-mI-open set if A⊂m-cl(m- 
int(A)) ∪ m-int(m-cl(A)). The complement of a b-mI- 
open set is a b-mi-closed set. 

3.2. Theorem. 

For a subset of an ideal minimal space, the 
following condition hold. 

(i) Every b-mI-open set is b-m-open. 

(ii) SmIO(X, ℳ) ∪ PmIO(X, ℳ) ⊂ BmIO(X, ℳ). 

(iii) Every m-open set is b-mI-open. 

Proof. (i) Let A be b-mI-open set. Then we have 

A⊂m-int(m-cl*(A)) ∪ cl*(m-int(A)) 

⊂m-int(𝐴∗ ∪ 𝐴) ∪((m-int(A))* ∪(m-int(A))) 

⊂m-int(m-cl(A) ∪ 𝐴) ∪(m-cl(m-int(A)) ∪(m-int(A))) 

⊂m-int(m-cl(A) ∪m-cl(m-int(A)) 

Therefore this shows that A is b-m-open. 

The proof is obvious for (ii),(iii). 

3.3. Theorem 

For a subset of an ideal minimal space, the 
following conditions hold. 

(i) Every pre-mI-open set is b-mI-open. 

(ii) Every semi-mI-open set is b-mI-open. 

(iii) Every b-mI-open set is β–mI-open. 

Proof. The proof is obvious for (i), (ii). 

(iii) Let A be an b-mI-open set. Then we have 

A⊂m-int(m-cl*(A)) ∪cl*(m-int(A)) 

⊂m-cl(m-int(m-cl*(A))) ∪[(m-int(A))* ∪m-int(A)] 

⊂m-cl(m-int(m-cl*(A))) ∪(m-cl(m-int(A)) ∪m- 
int(A)) 

⊂m-cl(m-int(m-cl*(A))) ∪(m-cl(m-int(A))) 

⊂m-cl(m-int(m-cl*(A))) 

Therefore this shows that A is an β–mI-open. 

3.4. Example 

(i) Let X={a,b,c,d}, ℳ={X 𝜙,{a,b},{b,c},{c,d}} and I= 𝜙. 
Let A={a,b,c} is b-mI-open but not semi-mI-open set. 

(ii) Let X={a,b,c,d}, ℳ={X 𝜙,{a},{b},{a,b,c},{b,c},{a,c}} 
and I={{a}, 𝜙}. Let A={a,c,d} is β–mI-open but not 
pre-mI-open set. 

(iii) Let X={a,b,c,d}, ℳ={X 𝜙,{a},{b},{b,c,d}} and I={ 𝜙 
, {b},{c},{b,c}}. Let A={a,b,c} is β–mI-open but not b- 
mI-open set. 

3.5. Theorem 

Let A be a b-mI-open set such that int(A)= 𝜙, 
then A is pre-mI-open. 

Proof. Since A⊂m-int(m-cl*(A)) ∪cl*(m-int(A))=m- 
int(m-cl*(A)) ∪m-cl*( 𝜙)=m-int(m-(cl*(A))). Then A 
is pre-mI-open. 

3.6. Theorem 

Let (X, 𝜏, ℳ) be an ideal minimal space and 
A,B subset of X. 
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(i) If Uα ∈ BmIO(X, 𝜏) for each  α∈ ∆,  then  ∪ *  Uα:  
α∈ ∆+ ∈ BmIO(X, 𝜏). 

(ii) If Aα∈ BmIO(X, 𝜏) and B∈ ℳ, then A∩ 𝐵 ∈ 
BmIO(X, 𝜏) 

Proof. (i)Since Uα ∈ BmIO(X, 𝜏), we have Uα⊂m- 
int(m-cl*( Uα)) ∪ cl*(m-int(Uα)) for every α∈ ∆. 
⊂∪α∈∆[{(m-int(Uα))* ∪m-int(Uα)} ∪(m-int((𝑈∗ ∪ 

Sufficiency: 

Let m-int(m-cl*(A)) ∩m-cl*(m-int(A)) ⊂A. 
Then X-A⊂X-[cl(m-int(A)] ∩(m-int(m-cl(A)))] ⊂[X- 
m-cl*(m-int(A))] ∪[X-m-int(m-cl*(A))]=[cl*(m-int(X- 
A) ∪m-int(m-cl*(X-A))). Thus X-A is b-mI-open and 
so A is b-mI-closed. 

4. DECOMPOSITION OF CONTINUITY VIA 

Uα))] 
α MINIMAL IDEALS 

⊂[{(m-int(∪α∈∆ Uα))* ∪m-int(∪α∈∆ Uα )} ∪(m- 
int((∪ α ∈ ∆𝑈∗ ∪ (∪α∈∆Uα))] 
[𝑐𝑙 ∗ (𝑚 − 𝑖𝑛𝑡(∪ ∈ Uα)) ∪m-int(m-cl*( ∪ ∈ Uα))] 

4.1. Definition 

A function f: (X,ℳ, 𝐼 )→(Y,σ) is said to be b- 
mI-continuous if for every V∈ σ,f-1(V) is an b-mI- 

α ∆ Therefore, 
α    ∆ 

open set of (X,ℳ, 𝐼 ). 
∪α∈∆Uα is b-mI-open. 

(ii) Let A∈BmIO(X, ℳ) and B∈ ℳ.Then A⊂m-int(m- 
cl*(A)) ∪cl*(m-int(A)) 

A∩ 𝐵 ⊂[m-int(m-cl*(A)) ∪ 𝑐𝑙 ∗ 𝑚 − 𝑖𝑛𝑡 𝐴 ] ∩ 𝐵 

⊂[{m-int(A))* ∪m-int(A)} ∪(m-int(A*∪A))] ∩ 𝐵 

⊂[{m-int(A∩ 𝐵))* ∪m-int(A∩B)} ∪(m-int((A∩ 𝐵)* ∪( 
A∩ 𝐵)))] 

⊂m-int(m-cl*( A∩ 𝐵)) ∪cl*(m-int(A∩ 𝐵)). Then A∩ 𝐵 
is b-mI-open. 

(i.e.) A∩ 𝐵 BmIO(X, 𝜏). 

3.7. Definition 

A subset A of a space (X, ℳ, 𝐼) is said to be a 
b-mI-closed set if its complement is b-mI-open. 

3.8. Theorem 

If a subset A of a space (X, 𝜏, ℳ) is b-mI- 
closed then m-int(m-cl*(A)) ∩m-cl*m-int(A)) ⊂A. 

Proof. Since A is b-mI-closed, X-A BmIO(X, ℳ) and 
since  ℳ*  is  finer  than   ℳ   X-A⊂ 𝑐𝑙 ∗ (𝑚 − 𝑖𝑛𝑡(𝑋 − 
𝐴)  ∪ m-int(m-cl*(X-A) ∪ 𝑚 − 𝑖𝑛𝑡(𝑚 − 𝑐𝑙 ∗ (𝑋 − 𝐴))) 

⊂cl(m-int(X-A)) ∪m-int(m-cl(X-A))) 

=[X-cl(m-int(A)] ∪[X-(m-int(m-cl(A)))] 

=X-[cl(m-int(A) ∩(m-int(m-cl(A)))]. Therefore, m- 
int(m0cl*(A)) ∩m-cl*(m-int(A)) ⊂A. 

3.9. Corollary 

Let A be a subset of (X, 𝜏, ℳ) such that X-[m- 
int(m-cl*(A))]=m-cl*(m-int(X-A)) and X-[m-cl*m- 
int(A))]=m-int(m-cl*(X-A)). Then A is b-mI-closed if 
and only if m-int(m-cl*(A)) ∩m-cl*(m-int(A)) ⊂A. 

Proof. Necessity: 

This is an immediate consequence of 
Theorem 3.8. 

 
4.2. Definition 

A function f: (X,ℳ )→(Y,σ) is said to be b-m- 
continuous if for every V∈ σ,f-1(V) is an b-m-open set 
of (X,ℳ). 

4.3. Theorem 

If a function f: (X,ℳ, 𝐼 )→(Y,σ) is said to be b-
mI-continuous then f is b-m-continuous. 

Proof. The proof is obvious. 
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