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ABSTRACT  

Mesoporous mixed metal oxides (SnO2(x) -TiO2 (1-x) , x= 0.75,0.50 and 0.25) were synthesized by 
evaporation induced self assembly using  cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) as 
the structure directing agent. The small angle X-ray diffraction pattern of mesoporous SnO2 and SnO2-TiO2 
mixed metal oxides revealed the presence of well defined mesostructure in the metal oxides. The mixed metal 
oxide system has crystallized in orthorhombic structure, resembling the host lattice. Mesopore channels were 
collapsed upon calcinations at 550°C. The optical absorption of the SnO2  has been extended into the visible 
region upon incorporation of  “Ti”. A remarkable enhancement of the photocatalytic degradation efficiency 
(60% ) of  (SnO2(0.5) -TiO2 (0.5) was observed against aqueous solution of methylene  blue dye. 
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1. INTRODUCTION 

Metal oxides are prospective materials for 
applications in various fields such as solar energy 
conversion, photocatalysis, electrochemical catalysis, 
lithium/sodium ion batteries, field effect transistors 
and super capacitors [1-17] and have been 
intensively studied due to their inherent chemical 
stability, abundance, low cost and environmental 
friendliness. Metal oxide nanostructures are being 
widely used in place of bulk counterparts as the 
unique morphology, surface structure and 
optoelectronic characteristics associated with the 
nanostructures are uniquely enhancing the 
performance devices. Rational design and 
reproducible synthesis of stable nanomaterials of 
particular shape, size and microstructure is highly 
desirable. In particular, synthesis of porous metal 
oxides with ordered pore structures, as required for 
photocatalytic applications is remaining a 
challenging task. Notably, tin oxide (SnO2), a wide 
band gap semiconductor, has appropriate 
optoelectronic characteristics suitable for 
photocatalytic applications but SnO2 nanostructures 
produced by solvothermal / hydrothermal methods 
have always exhibited a fairly low specific surface 
area(<50 m2 g-1)[18]. Hence it is imperative to 
improve the synthesis strategies to produce 
mesoporous SnO2 with improved specific surface 
area. Surfactant templating strategy for the synthesis 
of non-silica based mesostructures, mainly metal 
oxides in which both positively and negatively 
charged low molecular weight surfactants are widely 
being used  for the synthesis of mesoporous metal 

oxide nanoparticles. It was found that charge density 
matching between the surfactant and the inorganic 
species is important for the formation of the organic-
inorganic mesophases. In the recent past efforts have 
been made to employ the potential of mesoporous 
metal oxides/metal oxide nanocomposites for 
environmental remediation [19-24]. 

In the present work, an attempt has been 
made to synthesize Mesoporous Tin Oxide (SnO2) by 
Evaporation Induced Self Assembly and to 
extend/optimise the synthesis procedure to 
synthesize SnO2 –TiO2 mixed metal oxide system. 
Attempts have been made to analyse the 
photocatalytic activity of the mesoporous metal 
oxides for the degradation of methylene blue. 

2. MATERIALS AND METHODS 

 In the present work following methodology 
adopted for the synthesis of mesoporous SnO2 and 
SnO2(x) -TiO2 (1-x) mixed metal oxides by Evaporation-
Induced Self-Assembly.  

2.1. Synthesis of Ordered Mesoporous Titania  

Mesoporous tin oxide (SnO2) is synthesized 
using cationic surfactant, Cetyl Trimethyl 
Ammonium Bromide (CTAB) as the structure 
directing agent and tin tetrachloride (1.0 M in 
methylene chloride, Sigma Aldrich) and titanium 
tetrachloride (1.0 M in methylene chloride, Sigma 
Aldrich) as the source for tin and titanium 
respectively. The surfactant solution is obtained by 
dissolving 2.5 g of CTAB in 50 ml of cyclohexanol 
(Sigma Aldrich) and the solution (Sol A) is 
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continuously stirred for 2 h during which 3.5 ml of 
concentrated HCl is added drop wise.  To the 
resulting solution A, 10 ml of tin tetrachloride is 
added drop wise and stirred for 4 hours. The 
resulting solution thus obtained is made as a thin 
layer and kept in hot air oven maintained at 60°C for 
4 days. The solid product obtained is calcined in a 
tubular furnace at a temperature of 550°C for 6 
hours at a heating rate of 1°C / minute with air flow. 
The sample is coded as MSNO-43. Similarly mixed tin 
– titanium metal oxides (SnO2(x) -TiO2 (1-x)) are 
prepared by incorporating suitable amount of tin 
and titanium precursors. The resulting samples are 
coded as MSNO - 43 (SnO2), MSTO - 43 
(SnO2(0.75)TiO2(0.25)), MSOTO - 43 
(SnO2(0.5)TiO2(0.5)),MSTO - 43 (S2nO2(0.25)TiO2(0.75)), 
MTIO - 43 (TiO2) . 

2.2 Material characterization 

The characteristics of materials prepared in 
present work were systematically analyzed using X-
Ray Diffractometer (Rigaku Miniflex II), High 
Resolution Transmission Electron Microscope 
(HRTEM, JEOL JEM 2100, operated at an accelerating 
voltage of 120 kV), UV-Vis. Spectrophotometer 
(JASCO, V-650).  

 

2.3 Photocatalytic activity 

The synthesized SnO2 and metal oxide 
were tested for photocatalytic degradation of 
methylene blue. Around 0.2g of the catalyst was 
suspended in quartz cell along with 200ppm, 5ml 
aqueous solution of the dye. Prior to light irradiation, 
the suspension was stirred for 30 minutes in dark to 
attain the absorption- desorption equilibrium. The 
sample was irradiated using natural sunlight. At 
periodic intervals, 5ml aliquots were taken from the 
system and analysed using UV-Vis 
spectrophotometer. 

 

3. RESULTS AND DISCUSSION 

 The small angle X-ray diffraction pattern of 
mesoporous SnO2 and SnO2-TiO2 mixed metal oxides 
are shown in figures 1-5. The presence of well 
defined  diffraction peak centered at 2θ of 0.7° 
(Fig.1)  is indicative of the formation of long range 
ordered pore structure and the peaks are arising 
from (100) reflections associated with 2D hexagonal 
(P6mm) arrays of uniform mesopores [25]. 

The X-ray diffraction pattern of mesoporous 
SnO2 prepared in the present work is shown in figure 
6. The samples were found to have crystallized in 

orthorhombic structure, the formation of which is 
favored at higher temperatures [26]. XRD pattern of 
TiO2 reveals the formation of a mixed phase 
containing anatase, rutile and brookite.The XRD 
pattern of mixed metal oxides prominently featured 
characteristic features of orthorhombic SnO2 (JCPDS 
Card No. 78-1063). 
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Fig. 1. Small angle XRD pattern of MSNO-43 
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 Fig. 2. Small angle XRD pattern of MSTO-43 
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Fig. 3. Small angle XRD pattern of MSOTO-43 
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Fig. 4. Small angle XRD pattern of MTSO-43 
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Fig. 5. Small angle XRD pattern of MTIO-43 
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Fig. 6. XRD pattern of mesoporous SnO2 and 
SnO2-TiO2 mixed metal oxides 

 

The presence of pore channels in the porous 
metal oxides are noticed from the High Resolution 
Transmission Electron Micrographs (Figure 7 a and 
b) of the samples, MSNO-43 and MSOTO-43. The 
pore structure has been observed to collapse upon 
calcinations at 550°C.  

 
 

 

Figure 7. HRTEM images of mesoporous SnO2 and 
SnO2-TiO2 mixed metal oxides 

The diffuse reflectance UV-Vis. spectra of 
mesoporous SnO2 and SnO2-TiO2 mixed metal oxides 
are shown in Fig. 8. The mixed metal oxides 
(MSOTO-43 and MSTO-43) exhibited enhanced 
visible light absorption which can be ascribed to the 
presence of defect levels within the band gap of the 
material. 

(a) 

(b) 
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Fig.8. Diffuse reflectance UV-Vis. spectra of SnO2 
and SnO2-TiO2 mixed metal oxides 

The photocatalytic efficiency of mixed 
metal oxide nanoparticles are analysed against the 
photocatalytic degradation of methylene blue. The 
optical absorption characteristics of the dye without 
the photocatalyst and with photocatalyst are 
recorded using UV – Vis spectrophotometer. The 
photocatalyst is added to the aqueous solution of the 
dye and the reaction was allowed to proceed under 
direct sunlight. The concentration of the dye and the 
absorbance of the reactant at 390 nm (where has it 
absorbance maxima) are evaluated from Beer – 
Lambert law after specified reaction time of 20, 40 
and 60 minutes. The photocatalytic efficiency of the 
dye is calculated by noting the variation in the 
concentration of the dye after a specified reaction 
time (C) with respect to the concentration of the dye 
at time t = 0 (C0). 

 

Figure 9. Photocatalytic Performance of SnO2 and 
SnO2-TiO2 mixed metal oxides 

Fig. 9 shows the variation of C/C0with 
respect to time. SnO2 particles photocatalytically 
degraded methylene blue (MB) under visible light 
radiation by 30%. Since the mesoporous structure 

enhances the surface area of the semiconductor 
widely, remarkable enhancement in the 
photocatalytic efficiency of the mesoporous 
photocatalyst was observed. Photocatalytic 
efficiency of mesoporous SnO2(0.5) -TiO2 (0.5) (MSOTO-
43) nanoparticles was the highest (60%) and further 
doping has been found to decrease the 
photocatalytic efficiency. The creation of defect level 
in the host metal oxide due to formation of mixed 
metal oxide system plays a pivotal role in enhancing 
the visible light absorption and in increasing the 
lifetime of photogenerated charge carriers. 

 

4. CONCLUSION 

 Mesoporous tin oxide and SnO2(x) -TiO2 (1-x) 
mixed metal oxides were synthesized by evaporation 
induced self assembly method. Systematic analysis 
on the characteristics of the material revealed the 
formation of crystalline and mesoporous 
nanoparticles. The                SnO2(x) -TiO2 (1-x) exhibited 
visible light activity which originates from the 
creation of electronic states in the band gap of the 
material. The enhanced optoelectronic 
characteristics of the system SnO2(0.5) -TiO2 (0.5)  

extends the potential of material for environmental 
remediation through the treatment of organic 
pollutants such as 4-Chlorophenol and synthetic 
dyes. 
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